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LEITER TO THE EDITOR 

The Wahlquist-Estabrook method for evolution equations with 
a small parameter: a technique of approximating 
pseudopotentials 

Alexander A Alexeyev and Nick A Kudryashov 
Department of Applied Mathematics, Moscow Engineering Physics Institute, 31 Kashirskoe 
Avenue, Moscow 115409. Russia 

Received 8 August 1991 

Abstract. An approach is suggested to c o n ~ t r ~ c t  approximate solutions for nonlinear partial 
differential equations non-integrable by the inverse scattering transform. The method is 
applied la find an approximate Lax pair and conservation laws for the Kawahara equation. 

Wahlquist and Estabrook [ 11 introduced the concept of pseudopotentials into the study 
of nonlinear partial differential equations. The efficiency of this method in deriving 
Backlund transformations, conservation laws and Lax pairs is shown in [Z-41. However, 
its applicability is mainly restricted by the equations integrable by means of the inverse 
scattering transform (IS+).  As a rule, these integrable models are constructed assuming 
weak nonlinearities, and the terms with a small parameter are not taken into account 
in the describing physical processes. The pseudopotentials of these models can be 
L"LISI"CIC" appLunrrrlrrc: I", L U G  urrg"lll ~~u,,-,,L,cgLruK IIIUUCl>.  1 l l l J  L ' l C L  Lr'llurarry 
leads to the question whether an approach similar to the Wahlquist-Estabrook (WE) 

method could be developed to find analogies of the exact pseudopotentials taking into 
account terms with small parameters in the initial system. 

This work is an attempt to generalize the WE method for non-integrable equations 
with a small parameter close to the integrable ones in order to construct the analogies 
of Backlund transformtions, conservation laws, TIC. 

Let us consider a system of equations determining the evolution of the function 
q ( X ,  r )  (vectorial in general) with respect to x and r :  

^^_^  1.1^_^1 ^ _ _ _  -..: ...-... F.._ .Le '....̂  :-.---"L,-- ...̂ _1̂ 1" TL:" E"^. Î  .___ " 8 3 . .  

(1) 
qx = P(x,  r, 0 , .  , , , U h ,  rl) 
qr Q(x, r, 0 , .  . . , vix, 4) 

,E 

where u(x .  r )  is a new function. 
The integrability condition of (1) 

qxr - qtx = 0 (2) 
clearly imposes a restriction on the type of U. 

The requirement (2) is in fact a set of k differential equations relating the function 
U to the components of the vector q ;  k is its dimension. At k >  1, the equations can 
be incompatible for some P and Q. On the other hand, for some special P and Q (2) 
can be presented as 

L ( u , - K ( u  ,..., u , , ) ) = O  n c N  (3) 
where L is some linear differential operator with vectorial coefficients. 
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Definition I .  The function q in (1) is called a pseudopotential (exact) [ 2 ]  for the 
evolution differential equation 

U, = K ( u , .  . . , U,) n c N  
if (1) is integrable, and the condition (2) can be presented in the form (3). 

Let us take an evolution differential equation with a small parameter E 

U,= K ( u ,  U,, . . . , umx, E )  n € N  I & [ < <  1. (4) 

Definition 2. The function q in (1) is called an approximating pseudopotential (AP) 
of the mth order for equation (4) if it is the solution of ( I ) ,  the integrability condition 
(2) is compatible and is of the form 

L( U, - K (  U,. . . , unX, E ) )  +0( E"'+') = 0 n, m E N. ( 5 )  
It is clear that (4) has an exact pseudopotential if and only if it has an AP of an 

arbitrary order. On the other hand, for the scaiar AP of mth order to exist it is sufficient 
that (2) is of the form ( 5 ) .  

Below we consider 'the first kind pseudopotentials' [ 3 ] ,  i.e. P and Q are taken 
such that 

P = P ( u , q )  Q = Q ( u , . . . , ~ I ~ , ~ )  1 f N  
and the operator L is of the form 

aP L = - .  
au 

Let P and Q read as 
P =  Po+ EPl+. . . Q =  Q o + & Q I + .  . . . 

Assume that the function U satisfies (4) with the accuracy of O(E"'+'),  and make the 
integrability condition (2) of the form 

a a  
a t  ax 
- P - - Q + [ P ,  Q ] = O  

a a 
Jq 

[P ,  Q ] =  Q-  P - P -  Q 

be met with the same accuracy. Then equating the coefficients of each order in E up 
to sm to zero, we have 

Proposition 1. Let 
"' m 

P =  1 E ' P ~ + R ,  Q =  1 &'Qi+R2 
i = o  ,=o  

where 
RI =O(E"'+')  R z = O ( ~ " ' + l )  

and P and Q are chosen to satisfy (6 ) ,  then (1) determines the AP of the mth order 
for (4) if R I ,  RZ are taken such that the integrability condition (2) is compatible. 
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CoroNary 1. When dim q = I (i.e. for a scalar pseudopotential), R, and R, can be 
arbitrary functions of the O ( E ~ + ' )  order. 

Proposition 2. ( a )  The equations (6) for P, and Qi ( i  # 0) are linear and recursively 
depend on 4 and Q, (j < i) 
(b)  The equation for Po and Qo is of the type 

Proof: It directly follows from definition 2. 

Proof: These facts directly follow from (6). U 

Corollary 2. For an AP of a certain order for (4) to exist, it is necessary that there 
exists an exact pseudopotential for the equation 

U, = K / , = , .  

The procedure of finding Pi and Q, is fully analogous to that described in [Z] and 
reduces to the problem of the Lie algebra theory, namely, to the problem on the 
existence of some Lie algebra (Abelian or non-Abelian) compatible with the commuta- 

In the same way the APS analogous to the exact pseudopotentials that give rise to 
conservation laws, Backlund transformations and the IST can be obtained. Adiabatic 
invariants serve here as analogues of conserved densities. 

As an example let us construct the A& of the Kawahara equation resulting in both 
an approximate Lax pair and adiabatic invariants. For the sake of simplicity only 
one-dimensional pseudopotentials will be considered. The system (1) will also be called 
'a pseudopotential' for short. 

The Kawahara equation is well known in the theory of continuous medium. It 
arises in various applications, e.g. magneto-acoustic waves, waves in shallow water, 
and waves in nonlinear electric circuits (a review may be found in [ 5 ] )  and reads as 

tion re!ations obtained from (6 ) :  

u , + 6 u u , + u , , + ~ u ~ ~ ~ = O .  (7) 
Equation (7) can be shown to have no non-Abelian pseudopotentials (at least, no 
scalar ones). However, in what follows the Kawahara equation is proved to have the 
non-Abelian APS of the first order on the assumption I E ~ < <  1. This assumption corres- 
ponds to the case of a long-wave perturbation described by (7). 

In case of E = 0 (7) is transformed into the Korteweg-de Vries equation (Kdv) 
integrable by means of the IST. The latter can be obtained from the following exact 
pseudopotential for the K d v  equation [4] 

qx = -q2-  u + A  

q8 = 2q2u +4Aq2-2qu,+2u2t2hu +U,, -4.4'11 (8) 

where A is the spectral parameter. 

it is necessary to find an AP of the type 

qs = - 4 , -  U + A  + zPI(U, q )  + O ( E ~ )  

Let us construct an AP of the equation (7) corresponding to (8). For this purpose 

qt =2q2u f4Aq2-2qu,+2u2+2Au +U, -4A'u (9) 
+ @ I ( %  U,, U,, ~ X X X X ,  9)+O(E2) .  
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Applying the technique described in [23 to (6), one finds P , ,  Q, and (9) are of the 
form of the Riccati equation 

PI = $(-5q2u +4q2A - 5 u 2 +  l l h u  -4A2) 

Q, =f(18q2u2-4q2uA + llq’u, +4quux -4Aqu, - 6 9 4 ,  + 18u’ 

-26u’A +4uuX, -4A2u, - 2 (  U , ) ~ - S A U , ,  - 3 ~ ~ ~ ~ ) .  

Presenting 9 as 

a 
ax 

q=-ln+(x,r)  

(+ is the spectral function) and following [4], one gets a pair of linear equations for 
$ from (9) and (IO), which is analogous to the Lax pairs for integrable equations 

$,, - &$U& +(fe(10u2-20uA + 3 u  +8A2) + U - A ) +  = 0 

$ , + ( + E (  1 1 ~ ~ ~  + 8u2- 16uA + 16A2)+2u +4A)+* (11) 
+ ( E ( $ u ~ - : A u ~  - U,,,) -u,)+=O. 

(The terms of the 0 ( s 2 )  order are missing.) 
Clearly, at E = 0 these equations is transformed into the well known Lax pair of 

the K d v  equation [6]. Note that the set (9) is a generalized Miura transformation well 

Equations (11) can be reduced to the presentation suggested by Ablowitz et nl [ 6 ]  
known for the KdV [ 6 ] .  

q x = X q + 0 ( E 2 )  q, = Tq+O(E2) (12) 
where X and T are some matrices of the final dimension, and 

m 

X =  1 A‘X, T =  A‘T, m, n E N. 
i=0 i=0  

(Xi and T, are new matrices of the same dimension which are independent of the 
spectral parameter A.) 

The Lax pair (11) and the presentation (12) can be used to solve approximately 
(7) by means of the IST and to settle the problem on the deformation of N-soliton 
solutions of the K d v  equation on account of the small contribution of the fifth derivative 
in (7) by the technique similar to that suggested in [ 7 ] .  A detailed treatment of the 
problems as well as the consideration of any AP of higher orders is planned to be 
conducted by the authors in the future. 

Let us discuss in more detail finding the analogies of conservation laws and, 
respectively, adiabatic invariants. In the general case, one-dimensional Abelian A &  

can be related to approximate conservation laws. For equation (7) they can be derived 
recurrently. For this purpose it is necessary to construct an analgoue of the exact 
pseudopotential for the K d v  equation 

q x = A q - q  2 - U  9, = ( - A 2 q + A \ u  - 2 q U +  ux)x 

that leads to the K d v  hierarchy of conservation laws [6]. The AP for (7) is 

qx = ( A q  - q2 - U)+ ~ ( - - a h ~ + j A ’ q ~ - ~ A 9 ’ - $ 9 ~ + ~ 9 ~ ~  -;U’) + O ( & 2 )  ( 1 3 )  

a a 
ax ax 

9, =- ( -A2q+Au -2qu + U ~ ) + ~ E -  (6A3u+8A2qu +6A2u, -2Au2 

+6Au,, -20q2u, - 16qU2- 12p ,  -4uu, +6~,, ,)  + 0 ( E 2 ) .  (14) 
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Presenting q as 

dx,  t ) =  90b. f ) + & q l ( x ,  t ) + O ( E 2 )  ( 1 5 )  
and the functions qo, q,  as 

m m 

q, (x ,  1 ) -  A'wij(x, t ) .  
j = - 3  

%(x, r ) =  1 A'Woi(x, 0 
i=, 

( Wo,(x, 1) and Wlj(x, t )  are new functions) then substituting (15) into (13), (14). 
omitting the terms of O(E')  order, and making the coefficients at the powers of A equal 
to zero, from (13) one gets the recurrence formulas to determine WO; and W l j  with 
respect to Woj and W,' ( j  < i). (The corresponding adiabatic invariants are of the form 

- +m +m 

WIj d x  j = l , O o .  I-, WOjdx+& 

I. :" -I..:-..- al.... .I.̂ C_^. .^_... _I -.-- :..- 1 >--.:A:.. ^ P . L ^  .. ... .-.... :-- , 
.I 12 UUYlUUD L L I O L  LUG 111SL LS1111S UCLCIIIIIIIC ~"IISTIVCU UL-IISI,IC> U, LllC KO" cquarru,,., 
Accordingly equation (14) determines approximate conservation laws. The first four 
non-trivial adiabatic invariants are as follows: 

t m  

pI = dx (16) 

(iij P3 = 

p5=1- -  ( -u :+~u'+Eu: , )  dx (18) 

c+- u2 dx 
J -m 

+m 

t m  

( ( - 2 2 ~ : ~ - 6 u ~ ~ u ~ + S u ~ +  u : ~ )  
p7 = I-, 

+ E ( - ~ u : ~ ~ +  lOu:,u +TU, ,U:) )  Y908 dx. 
Note that p I ,  p3 and ps are identical to the exact conserved densities of (7). Moreover, 
the Kawahara equation represents the Hamiltonian system 

The conserved densities (16)-(18) may be used to establish global existence of solutions 
(7) for the Cauchy problem in Sobolev spaces [ 8 , 9 ] ,  in particular, to prove stability 
of the solitary wave type solution obtained in [lo, 111 for equation (7). 
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