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LETTER TO THE EDITOR

The Wahlquist—Estabrook methed for evolution equations with
a small parameter: a technique of approximating
pseudopotentials

Alexander A Alexeyev and Nick A Kudryashov

Department of Applied Mathematics, Moscow Engineering Physics Institute, 31 Kashirskoe
Avenue, Moscow 115409, Russia

Received 8 August 1991

Abstract. An approach is suggested to construct approximate solutions for nonlinear partial
differential equations non-integrable by the inverse scattering transform. The method is
applied to find an approximate Lax pair and conservation laws for the Kawahara equation.

Wahlquist and Estabrook [ 1] introduced the concept of psendopotentials into the study
of nonlinear partial differential equations. The efficiency of this method in deriving
Bicklund transformations, conservation laws and Lax pairs is shown in[2-4]. However,
its applicability is mainly restricted by the equations integrable by means of the inverse
scattering transform (1s1). As a rule, these integrable models are constructed assuming
weak nonlinearities, and the terms with a small parameter are not taken into account
in the describing physwal processes The pseudopotentlals of these models can be
considered approximaw for the orniginal ‘non- imegrauw models. This fact naturally
leads to the question whether an approach similar to the Wahlquist-Estabrook (wg}
method could be developed to find analogies of the exact pseudopotentials taking into
account terms with small parameters in the initial system.

This work is an attempt to generalize the wg method for non-integrable equations
with a small parameter close to the integrable ones in order to construct the analogies
of Bickiund transformtions, conservation laws, cic,

Let us consider a system of equations determining the evolution of the function
g( X, 1) (vectorial in general) with respect to x and ¢:

qx=P(x,t,v,...,v,x,q)
=Qx, Lv,..., 00, q)
where v(x, ¢} is a new function.
The integrability condition of (1)
9~ 4:=0 (2)
clearly imposes a restriction on the type of v
The requirement {2) is in fact a set of k differential equations relating the function
v to the components of the vector ¢; k is its dimension. At k> 1, the equations can
be incompatible for some P and Q. On the other hand, for some special P and Q (2)
can be presented as
Liv,— K{v,...,0..))=0 neN (3)
where L is some linear differential operator with vectorial coefficients.

le N (1)
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Definition 1. The function g in (1) is called a pseudopotential (exact) [2] for the
evolution differential equation

v,=K(v,..., Uy) neN
if (1) is integrable, and the condition (2} can be presented in the form (3).

Let us take an evolution differential equation with a small parameter ¢
w,=K(u,u,, ..., u,, &) neN le]« 1. (4)
Definition 2. The function ¢ in (1) is called an approximating pseudopotential (ar)

of the mth order for equation (4) if it is the solution of (1), the integrability condition
(2) is compatible and is of the form

Lv,— K(v,..., Up, e} +0{e™ ) =0 n,me N. (5
It is clear that {4) has an exact pseudopotential if and only if it has an Ap of an
arbitrary order. On the other hand, for the scalar Ap of mth order to exist it is sufficient
that (2) is of the form (5).
Below we consider ‘the first kind pseudopotentials’ [3], i.e. P and Q are taken
such that

P=P(v, q) Q=0Q(v,..., 0, 4) leN
and the operator L is of the form
oP
=
Let P and Q read as
P=P,+sP+... Q=0Qo+eQ,+....
Assume that the function v satisfies (4) with the accuracy of O(¢™"'}, and make the
integrability condition (2) of the form

3 9
5 f o QIR Q=0

[P,Q]=Q%P—P£Q

be met with the same accuracy. Then equating the coefficients of each order in & up
to £™ to zero, we have

) 5] i R —
Y HF,-—Q+Y[PQ,)=0  i=0m
j=0 ov ax j=0
=TT Vj.
T UE fe=0
Proposition 1. Let
P=7 EER"'Rl Q= ¥ EiQi+R2
i=0 i=0
where
R1=O(Em+l) R2=O(Em+l)

and P and @ are chosen to satisfy (6}, then (1) determines the Ap of the mth order
for (4) if R,, R, are taken such that the integrability condition (2} is compatible,
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Proof. 1t directly follows from definition 2. O

Corollary 1. When dim ¢ =1 (i.e. for a scalar pseudopotential), R, and R, can be
arbitrary functions of the O(e™"!) order.

Proposition 2. (a) The equations (6) for P, and @Q; {i #0) are linear and recursively
depend on P, and Q; (j<i)
(b) The equation for P, and Q, is of the type

oPy

a
K|e=0__“‘ Q,+[Py, Qy]=0.
au ax

Proof. These facts directly follow from (6). O

Corollary 2. For an Ap of a certain order for (4) to exist, it is necessary that there
exists an exact pseudopotential for the equation

U, =K|s=0-

The procedure of finding P; and Q, is fully analogous to that described in [2] and
reduces to the problem of the Lie algebra theory, namely, to the problem on the
existence of some Lie algebra {( Abelian or non-Abelian) compatible with the commuta-
tion relations obtained from (6).

In the same way the aps analogous to the exact pseudopotentials that give rise to
conservation laws, Bicklund transformations and the 1sT can be obtained. Adiabatic
invariants serve here as analogues of conserved densities.

As an example let us construct the Aps of the Kawahara equation resulting in both
an approximate Lax pair and adiabatic invariants. For the sake of simplicity only
one-dimensional pseudopotentials witl be considered. The system (1) will also be called
‘a pseudopotential” for short.

The Kawahara equation is well known in the theory of continuous medium. It
arises in various applications, e.g. magneto-acoustic waves, waves in shallow water,
and waves in nonlinear electric circuits (a review may be found in [5]) and reads as

U, 61, + Uy + El o = 0. @)
Equation (7) can be shown to have no non-Abelian pseudopotentials (at least, no
scalar ones). However, in what follows the Kawahara equation is proved to have the
non-Abelian aps of the first order on the assumption |£|« 1. This assumption corres-
ponds to the case of a long-wave perturbation described by (7).

In case of £=0 (7) is transformed into the Korteweg-de Vries equation (xdv)
integrable by means of the 1sT. The latter can be obtained from the following exact

pseudopotential for the Kav equation [4]
qx = _qz_h u+a
g, =2q°u+4aq”> - 2qu, +2u”+ 2Au + u,, ~ 42 7u (8)

where A is the spectral parameter.
Let us construct an Ar of the equation (7) corresponding to (8). For this purpose
it is necessary to find an ap of the type

g: = —q>—u+A+ePy{u, q)+0(s%)
g, =2q u+4rq* —2qu, + 20"+ 2 u+ u, — 41 ’u 9)
+ 8Qi( U, Uy, Uy, By Yxurs §)+ O(E7).



198 Letter to the Editor

Applying the technique described in [2] to (6), one finds P,, Q, and (9) are of the
form of the Riccati equation

P =}-5¢°u+4g°A —5u>+ 11Au—4r?)
Q1 =%(18¢°u’ —4¢ ur +11q°u,, + dquu, — drqu, — 6qu,.. + 18u° (10)
— 2617 A +4uu,, —4A%u, —2(u. ) — SAu,, —3u

XXIX)‘

Presenting ¢ as
]
g=—-In¢(x, 1}
0x

(¥ is the spectral function) and following [4], one gets a pair of linear equations for
 from (9) and (19), which is analogous to the Lax pairs for integrable equations

Pex — et + (e (1047 —20uA + 3u+8A%) +u—A)Pp =0
W+ (GE(1 1, +8u° — 16uA + 16A%) + 2u + 41y, (11)
+ (E(%uux _%Aux - uxxx) - ux)lp =0.

(The terms of the O(&?) order are missing.)

Clearly, at ¢ =0 these equations is transformed into the well known Lax pair of
the kav equation [6]. Note that the set (9) is a generalized Miura transformation well
known for the kdv [6].

Equations (11) can be reduced to the presentation suggested by Ablowitz et al [6]

4 = Xqg+0(£%) 4. = Tg+0(e%) (12)

where X and T are some matrices of the final dimension, and

X =7 A'X, T=173 A'T, mne N,
i=0 i=0
(X; and T; are new matrices of the same dimension which are independent of the
spectral parameter A.)

The Lax pair (11) and the presentation (12) can be used to solve approximately
(7) by means of the 1sT and to settle the problem on the deformation of N-soliton
solutions of the kdv equation on account of the small contribution of the fifth derivative
in (7) by the technique similar to that suggested in [7]. A detailed treatment of the
problems as well as the consideration of any AP of higher orders is planned to be
conducted by the authors in the future.

Let us discuss in more detail finding the analogies of conservation laws and,
respectively, adiabatic invariants. In the general case, one-dimensional Abelian Ars
can be related to approximate conservation laws. For equation (7} they can be derived
recurrentty. For this purpose it is necessary to construct an analgoue of the exact
pseudopotential for the kav equation

G=Ag~q’~u go=(—A*q+Au—2qu+u),
that leads to the kdv hierarchy of conservation laws [6]. The ap for (7) is
g =(Ag—g>—u)+ (A +iA% - Fag’ -3¢ +5¢°u —3u7) + O(e?) (13)
d
q, =ai (=A%g+Au—2qu+ ux)+%ea— (6A%u+ 82 qu +6A%u, - 2Aau°
X X

+6Au,, —20g7 0, — 16qu> — 12qu,, ~ 4un, + 61, ) + O(&?). (14)
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Presenting g as

g(x, 1) = go(x, 1)+ £q,(x, 1)+ O(£?) (15)
and the functions q;, ¢, as
golx, )= T A'Wy(x, 1) g:(x, =T NMW;(x1).
i=1 j=-3

(Woi(x, ¢} and Wy;(x, t) are new functions) then substituting (15) into (13), (14),
omitting the terms of O(e°) order, and making the coefficients at the powers of A equal
to zero, from {13) one gets the recurrence formulas to determine W,; and W,; with
respect to Wy; and W,; (j <i). (The corresponding adiabatic invariants are of the form

+c0

+00
pi= W()j dx+€—|' le dx j=1,(x).

mlcrinan ot o Lo L [y, e e [P .

1 is obvious that the first terms determine conserved densities of the kKdv gquat {io
Accordingly equation (14) determines approximate conservation laws. The first four
non-trivial adiabatic invariants are as follows:

i ["

f* +oo

o= u dx (16)
r+oo

= u2 dx (17)
* +oo

ps= (—ui+2u+eul) dx (18)
o —a0

4o
pr= J ((—22uku - 6u u’+5u+ul)

—a0
+ 8( 21uxxx + louxxu + 9g?suxxux)) dx-

Note that p,, p; and ps are identical to the exact conserved densities of (7). Moreover,
the Kawahara equation represents the Hamiltonian system

a éH
2= Hz__l .
a! (:Su) 205

The conserved densities (16)-(18) may be used to establish global existence of solutions
(7) for the Cauchy problem in Sobolev spaces {8, 9], in particular, to prove stability
of the solitary wave type solution obtained in [10, 11] for equation (7).
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